39 research outputs found

    Constraint-consistent Runge-Kutta methods for one-dimensional incompressible multiphase flow

    Get PDF
    New time integration methods are proposed for simulating incompressible multiphase flow in pipelines described by the one-dimensional two-fluid model. The methodology is based on 'half-explicit' Runge-Kutta methods, being explicit for the mass and momentum equations and implicit for the volume constraint. These half-explicit methods are constraint-consistent, i.e., they satisfy the hidden constraints of the two-fluid model, namely the volumetric flow (incompressibility) constraint and the Poisson equation for the pressure. A novel analysis shows that these hidden constraints are present in the continuous, semi-discrete, and fully discrete equations. Next to constraint-consistency, the new methods are conservative: the original mass and momentum equations are solved, and the proper shock conditions are satisfied; efficient: the implicit constraint is rewritten into a pressure Poisson equation, and the time step for the explicit part is restricted by a CFL condition based on the convective wave speeds; and accurate: achieving high order temporal accuracy for all solution components (masses, velocities, and pressure). High-order accuracy is obtained by constructing a new third order Runge-Kutta method that satisfies the additional order conditions arising from the presence of the constraint in combination with time-dependent boundary conditions. Two test cases (Kelvin-Helmholtz instabilities in a pipeline and liquid sloshing in a cylindrical tank) show that for time-independent boundary conditions the half-explicit formulation with a classic fourth-order Runge-Kutta method accurately integrates the two-fluid model equations in time while preserving all constraints. A third test case (ramp-up of gas production in a multiphase pipeline) shows that our new third order method is preferred for cases featuring time-dependent boundary conditions

    Parabolic interface reconstruction for 2D volume of fluid methods

    Get PDF
    For capillary driven flow the interface curvature is essential in the modelling of surface tension via the imposition of the Young–Laplace jump condition. We show that traditional geometric volume of fluid (VOF) methods, that are based on a piecewise linear approximation of the interface, do not lead to an interface curvature which is convergent under mesh refinement in time-dependent problems. Instead, we propose to use a piecewise parabolic approximation of the interface, resulting in a class of piecewise parabolic interface calculation (PPIC) methods. In particular, we introduce the parabolic LVIRA and MOF methods, PLVIRA and PMOF, respectively. We show that a Lagrangian remapping method is sufficiently accurate for the advection of such a parabolic interface. It is numerically demonstrated that the newly proposed PPIC methods result in an increase of reconstruction accuracy by one order, convergence of the interface curvature in time-dependent advection problems and Weber number independent convergence of a droplet translation problem, where the advection method is coupled to a two-phase Navier–Stokes solver. The PLVIRA method is applied to the simulation of a 2D rising bubble, which shows good agreement to a reference solution.</p

    Entrainment and boundary-layer separation:a modeling history

    Get PDF
    For many decades since Prandtl’s presentation of the boundary-layer equations, all attempts to calculate separated boundary layers ended up in a break-down of the numerical algorithm. It was not until the late 1970s that the first successful calculations were reported. The paper describes the history and philosophy of the steps that led to understanding where the break-down originates and how to circumvent it. Especially, the role of Head’s entrainment will be highlighted

    Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow

    Get PDF
    The simulation of turbulent flows by means of computational fluid dynamics is highly challenging. The costs of an accurate direct numerical simulation (DNS) are usually too high, and engineers typically resort to cheaper coarse-grained models of the flow, such as large-eddy simulation (LES). To be suitable for the computation of turbulence, methods should not numerically dissipate the turbulent flow structures. Therefore, energy-conserving discretizations are investigated, which do not dissipate energy and are inherently stable because the discrete convective terms cannot spuriously generate kinetic energy. They have been known for incompressible flow, but the development of such methods for compressible flow is more recent. This paper will focus on the latter: LES and DNS for turbulent subsonic flow. A new theoretical framework for the analysis of energy conservation in compressible flow is proposed, in a mathematical notation of square-root variables, inner products, and differential operator symmetries. As a result, the discrete equations exactly conserve not only the primary variables (mass, momentum and energy), but also the convective terms preserve (secondary) discrete kinetic and internal energy. Numerical experiments confirm that simulations are stable without the addition of artificial dissipation. Next, minimum-dissipation eddy-viscosity models are reviewed, which try to minimize the dissipation needed for preventing sub-grid scales from polluting the numerical solution. A new model suitable for anisotropic grids is proposed: the anisotropic minimum-dissipation model. This model appropriately switches off for laminar and transitional flow, and is consistent with the exact sub-filter tensor on anisotropic grids. The methods and models are first assessed on several academic test cases: channel flow, homogeneous decaying turbulence and the temporal mixing layer. As a practical application, accurate simulations of the transitional flow over a delta wing have been performed

    Accelerated free-surface flow simulations with interactively moving bodies

    Get PDF
    One of the challenges of simulating free-surface flow around moored or floating objects is the modelling, including the algorithmic coupling, of objects whose dy- namics is determined by a two-way interaction with the incoming waves. The ’traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object be- comes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The quasi-simultaneous method will be demon- strated on a number of simulation results for engineering applications from the offshore industry: the motion of a moored TLP platform in extreme waves, and the launch of a free-fall life boat

    Locally-refined free-surface flow simulations for moored and floating offshore platforms

    Get PDF
    The simulation of free-surface flow around moored or floating objects faces a series of challenges concerning the flow modelling and the numerical solution  method. During the development of the ComFLOW simulation method many of these challenges have been tackled, as there are wave propagation, absorbing boundary conditions, turbulence modeling, fluid-solid body interaction and numerical efficiency. Several of these challenges will be discussed in the paper. To demonstrate the current capabilities of ComFLOW, a number of simulation results for engineering applications from the offshore industry will be presented. Examples are wave impact against a semi-submersible offshore platform, an oscillating buoy, and a free-fall life boat dropping into wavy water. For these applications, MARIN has carried out several validation experiments
    corecore